Course Objectives:

The objectives of the course are:-

- 1. Toenable the students to work with microorganisms
- 2. Tounderstand the basic techniques of sterilization, culturing and isolation
- 3. Todetermine different characteristics of the microorganisms

Course Learning Outcomes:

Upon successful completion of the course, the student will be able to:

- 1. ATTAINthe fundamental knowledge regardingmicroorganisms
- 2. COMPREHEND the basic concepts of microbial diversity
- 3. GRASPthe microbiological techniques and use them efficiently
- 4. **EXPLORE**the microbial diversity androle of microorganisms
- 5. VALIDATE practical skills in the design and execution of experiments
- 6. APPLY the scientific method of investigation and hypothesis testing Course Outline:
- 1. The beginnings of Microbiology
- Discovery of the microbial world
- Discovery of the role of microorganisms in transformation of organic matter, in the causation of diseases, development of pure culture methods
- The scope of microbiology
- Microbial evolution, systematics and taxonomy
- Characterization and identification of microorganisms
- Nomenclature and Bergey's manual
- 2. Viruses
- Bacteriophages and phages of other protists
- Replication of bacteriophages
- Viruses of animals and plants
- History, structure and composition
- Classification and cultivation of animal viruses
- Effects of virus infection on cells
- Cancer and viruses
- 3. Morphology and fine structure of bacteria

· Size, shape and arrangement of bacterial cells

- Flagella and motility, Pili, Capsules, sheaths, Prosthecae and stalks
- Structure and chemical composition of cell wall

Cytoplasmic membrane

Protoplasts, spheroplasts, the cytoplasm, nuclear material

4. Cultivation of bacteria

- Nutritional requirements and nutritional types of bacteria
- Physical conditions required for growth
- · Bacteriological media
- Choice of media and conditions of incubation

5. Reproduction and growth of bacteria

- Modes of cell division
- New cell formation, Normal growth cycle of bacteria, synchronous growth, Continuous culture
- Quantitative measurement of bacterial growth, Direct microscopic count, Electronic enumeration of cell numbers, the plate count method, Membrane-filter count, Turbidimetric method
- Determination of nitrogen content and dry weight of cells
- The selection of a procedure to measure growth and importance of measurement of growth

6. Pure cultures and cultural characteristics

- Natural microbial populations, Selective methods, Chemical methods, Physical methods, Biological methods, Selection in nature
- Pure cultures, Methods of isolating pure cultures, Maintenance and preservation of pure cultures, Culture collections
- Cultural characteristics; Colony characteristics, Characteristics of broth cultures

7. Eukaryotic microorganisms

- Algae: Biological and economic importance of algae
- Characteristics of algae; Lichens. Fungi: Importance of fungi
- Morphology; Physiology and reproduction, Cultivation of fungi
- Economic importance of protozoa

8. Prokaryotic diversity

- Purple and green bacteria, cyanobacteria, prochlorophytes, chemolithotrophs, methanotrophs and methylotrophs, sulfate and sulfur-reducing bacteria, homoacetogenic bacteria
- Budding and appendaged bacteria, spirilla, spirochetes, Gliding bacteria, Sheathed bacteria, Pseudomonads, Free living aerobic nitrogen fixing bacteria, Acetic acid bacteria, Zymomonous and chromobacterium, Vibrio, Facultatively aerobic Gram-negative rods, Neisseria and other Gram-negative cocci, Rickettsias, Chlamydias, Gram-positive cocci, Lactic acid bacteria, Endospore forming Gram- positive rods and cocci, Mycoplasmas, High GC Gram-positive bacteria
- Actinomycetes, Coryneform bacteria, propionic acid bacteria, Mycobacterium, Filamentous Actinomycetes
- Archaea, Extremely Halophilic archaea, Methane producing archaea, Methanogens, Hyperthermophilic archaea, Thermoplasma

Practical:

- 1. Preparation of culture media
- 2. Pure culturing and cultivation of microbes
- 3. Simple, Gram, endospore, capsular, flagellar and acid fast staining of different genera of bacteria/Vital staining and microscopic observations of protozoa
- 4. Isolation of bacteriophages

Text and Reference Books:

- 1. Microbiology: An Introduction, 12th ed. (2018) by Gerard J. Tortora, Berdell R. Funke, Christine L. Case.
- 2. Prescott's Microbiology, 10th ed. (2017) by Joanne Willey, Linda Sherwood and Christopher

J. Woolverton.

- 3. Laboratory Experiments in Microbiology, 11th ed. (2015) by Ted R. Johnson and Christine L. Case.
- Brock Biology of Microorganisms, 14th ed. (2014) by Michael T. Madigan, John M. Martinko, Kelly S. Bender, Daniel H. Buckley, David A. Stahl and Thomas Brock.
- 5. Alcamo's Fundamentals of Microbiology, 9th ed.(2012) by Jeffrey C Pommerville.
- 6. Bergey's Manual of Systematic Bacteriology(2012).
- 7. Microbiology Principles and Explorations (2001) by Jacquelyn, G.G.